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1 Financial Summary 
Contract Effective Date 06/30/2014 
Contract End Date 06/30/2016 
Reporting Period 4/1/2014 – 06/30/2015 
Total Contract Amount $602,165 
Incurred Costs this Period $31,691 
Incurred Costs to Date $320,213 
Est. Cost to Completion $281,952 

2 Project Overview 
Background:  
Current requirements for critical and embedded infrastructures call for significant increases 
in both the performance and the energy efficiency of computer systems. Needed 
performance increases cannot be expected to come from Moore’s Law, as the speed of a 
single processor core reached a practical limit at ~4GHz; recent performance advances in 
microprocessors have come from increasing the number of cores on a single chip. However, 
to take advantage of multiple cores, software must be highly parallelizable, which is rarely 
the case. Thus, hardware improvements alone will not provide the desired performance 
improvements and it is imperative to address software efficiency as well. 

Existing software-engineering practices target primarily the productivity of software 
developers rather than the efficiency of the resulting software. As a result, modern software 
is rarely written entirely from scratch—rather it is assembled from a number of third-party or 
“home-grown” components and libraries. These components and libraries are developed to 
be generic to facilitate reuse by many different clients. Many components and libraries, 
themselves, integrate additional lower-level components and libraries. Many levels of library 
interfaces—where some libraries are dynamically linked and some are provided in binary 
form only—significantly limit opportunities for whole-program compiler optimization. As a 
result, modern software ends up bloated and inefficient. Code bloat slows application 
loading, reduces available memory, and makes software less robust and more vulnerable. At 
the same time, modular architecture, dynamic loading, and the absence of source code for 
commercial third-party components make it hopeless to expect existing tools (compilers and 
linkers) to excel at optimizing software at build time. 

The opportunity:  
Our objective in this project is to substantially improve the performance, size, and robustness 
of binary executables by using static and dynamic binary program analysis techniques to 
perform whole-program optimization directly on compiled programs: specializing library 
subroutines, removing redundant argument checking and interface layers, eliminating dead 
code, and improving computational efficiency. In particular, we will apply specialization and 
partial evaluation technology, integrating the new technology with the techniques developed 
during the previous contract effort. We expect the optimizations to be applied at or 
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immediately prior to deployment of software, giving our tool an opportunity to tailor the 
optimized software to its target platform. Today, machine-code analysis and binary-rewriting 
techniques have reached a sufficient maturity level to make whole-program, machine-code 
optimization feasible. Thus, we believe there is now a great opportunity to design tools that 
will revolutionize the software development industry. 

Work items: 

We expect to develop algorithms and heuristics to accomplish the goals stated above. We 
will embed our work in a prototype tool that will serve as our experimental and testing 
platform. Because “Lean and Efficient Software: Whole-Program Optimization of 
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the 
prototype tool as Laci (for LAyer Collapsing Infrastructure). 

The specific work items for the base contract period are listed below: 

1. Investigate specialization opportunities.  The contractor will design and implement limit 
studies that will help focus the search for fruitful applications of partial evaluation and set 
goals for attainable improvements. 

2. Transfer UW technology.  The contractor will transfer program-specialization or partial-
evaluation technology from the University of Wisconsin and integrate it into the 
contractor’s tool chain. 

3. Improve and extend UW technology.  The contractor will improve the robustness and 
scalability of the transferred technology, and complete partially implemented 
components and functionality. 

4. Improve and extend IR construction and rewriting.  The contractor will improve 
intermediate-representation construction and rewriting infrastructure as needed to 
demonstrate functionality on the primary test subjects. 

5. Develop and maintain test infrastructure.  The contractor will create an extensive suite 
of test applications, and will maintain and extend it as necessary. The contractor will also 
implement validation and measurement functionality that will enable tracking the 
robustness and benefits of program transformations. 

6. Investigate security implications.  As time permits, the contractor will study the effect of 
different instruction-generation mechanisms, such as peephole superoptimization, on 
security. As time permits, the contractor will also study whether polyvariant 
specialization enables (i) the creation of finer security-relevant models of program 
behavior and (ii) more accurate or efficient enforcement of security policies. If earlier 
tasks that are essential in completing a functional prototype require more effort, we 
propose to shift this task to the option period, with the possible adjustments of lower 
effort on either or both of the first two option-period tasks. 
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7. Produce deliverables and attend required meetings.  The contractor will produce 
technical documentation in the form of reports and a working software prototype. The 
contractor will attend meetings requested by the program monitor. 

3 Accomplishments during the reporting period 
In the previous quarter we had begun transitioning UW’s partial evaluation technology for 
use in LACI. This quarter we focused on exploring different options for how to apply the 
partial evaluator on a sizeable program. We examined both applying it at the whole-program 
level and trying to identify useful subcomponents on which to focus the partial evaluator. 

A key challenge here is in constructing a partitioning of the input program into instructions 
that can be statically evaluated and those that require dynamic input. At the whole program 
level, it is difficult to implement this construction effectively due to the complexity of 
tracking dynamic data flow. We currently are achieving only a 3% division for the portion of 
the code marked static. 

Operating on subcomponents seems a promising alternative, as dynamic data flow can be 
locally determined more precisely. We’ve made an initial stab at carving out subcomponents 
to operate on independently. This initial approach hasn’t yielded much improvement. 
However, we’re aware of a key flaw in the approach and plan to investigate a fix for this flaw 
in the next quarter. 

A related problem that we’ve encountered has to do with the fact that the partial evaluator 
relies on analysis of control dependences in the original program. Our observation is that 
control dependence analysis is too conservative, resulting in a division between static and 
dynamic instructions being overly pessimistic (labelling instructions that can be evaluated 
statically as if they were dynamic). This is particularly problematic for functions that have 
early exit paths (e.g. for error checking). In the next quarter, we plan to investigate what 
options exist for relaxing the reliance on control dependences. 

The following sections provide details on these accomplishments. 

3.1 Application of Partial Evaluation at the Whole-Program Level 
The partial evaluator involves three high-level steps. This first is to partition the instructions 
in the program into two sets: static and dynamic. The second step operates on the static 
instructions, performing the evaluation of their operations on a partial state of the program. 
The third step is to generate new code in which the static instructions are removed and 
replaced with sufficient code to feed in the correct state to the remaining dynamic 
instructions when they depend on values computed by the static instructions. 

The effectiveness of the partial evaluator for a particular application will therefore be 
dependent on how large the static half of the partitioning is. Constructing the perfect 
partitioning is generally not possible due to imprecision in our ability to track all possible data 
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flows (dependence analysis). Thus the partial evaluator errs on the conservative side, 
labelling some instructions as dynamic even though they could be statically evaluated. 

A second challenge that affects the quality of the partitioning is how well we can identify 
sources of dynamic inputs. Again, to be conservative, we rely on an over-approximation of 
the actual sources of dynamic data in a program. For example, if a program calls a function 
that is external to the application, and the analysis engine has no information on the 
behavior of that function, we conservatively assume that the function’s return value (and 
objects passed by reference to the function) may contain dynamically provided data. 

Taken together, these two issue appear to compound at the whole-program level. We 
applied the partitioning to couple mid-sized applications and found that the static 
partitioning covered only 3% of the instructions. This is likely too small a margin to gain much 
optimization benefit. 

3.2 Application of Partial Evaluation on Subcomponents 
One of the opportunities we’re hoping LACI can leverage is the interface between client and 
library code. Assuming developers often don’t need the full generality present in a given 
library, it’s likely that a lot of the library code can be trimmed down with partial evaluation. 

With this in mind, we began investigating the possibility of applying the partial evaluator on 
subtrees of the call graph. In particular, we looked at function calls in which one or more of 
the parameters passed to the function is a constant value. If we can generate a customized 
version of the function (and its callees) based on those fixed parameters, then we can 
eliminate excess code and computation for that specific calling context. 

Our first approach to this was to constrain the partial evaluator’s partitioning 
implementation to just the functions that are transitively called from a given call site. 
Unfortunately, we hit a snag due to how the partitioning is implemented. The partitioning 
leverages CodeSurfer’s dependence analysis, which computes the data and control 
relationships between different instructions in the program. Basically, the partitioning is 
constructed by performing a forward slice from the dynamic seeds of the program. 
Instructions covered by the slice are deemed dynamic. Those not covered by the slice are 
static. 

Operating at the subcomponent level, we start the slice at the non-constant parameters to a 
specific function call. (We must also include other possible sources of dynamic input within 
the subcomponent as well.) The instructions not covered by the slice can be deemed static 
with respect to the specific calling context that we’re interested in. 

Where we ran into trouble, however, is that the default behavior of CodeSurfer’s slicing 
operation is to continue following dependence relationships beyond the boundaries of the 
subcomponent. If the slice reaches a second call site to the same function with a different 
configuration of constant/non-constant parameters, then the slice will be muddied by this 
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second call-site. As a result, we will again have an overly conservative partitioning of the 
code. 

CodeSurfer has a couple other slicing modes that we experimented with, however, none of 
them quite have the right behavior needed in our situation. Instead, it seems the right 
approach is implement a customized slice using CodeSurfer’s API that properly constrains the 
slice to the given calling context. We’re planning to attempt this in the next quarter. 

3.3 The Problem of Control Dependences 
The partial evaluator leverages dependence analysis to construct the partitioning between 
static and dynamic instructions. This relies on two notions of dependence:  

• A data dependence indicates that a value computed at one instruction is used at 
another instruction. 

• A control dependence indicates that a control-flow operation performed at one 
instruction affects whether or not another instruction is executed. 

Obviously, data dependences indicate direct flow of dynamic information through the system 
from one computation to the next. Control dependences represent more subtle flow of 
information. Consider the following function: 

int foo(int input_var)  
{  
  int x;  
  int y;  
  if (input_var > 10) {  
    x = 1;  
  }  
  else {  
    x = 2;  
  }  
  y = x;  
  return y;  
} 

In this example, the assignment to y has data dependences on both of the two assignments 
to x. However, neither of the assignments to x has any data dependences on any other 
instructions - their computation has no inputs. Thus, considering data dependence alone, the 
assignment to y does not appear to be dependent on dynamically provided input. Yet clearly 
its value does depend on the value of input_var. This is where control dependence comes in. 
Both of the assignments to x are control-dependent on the conditional of the if statement. 
Relying on both data and control dependences, we can correctly detect that the assignment 
to y should, in fact, be classified as a dynamic instruction. 

However, leveraging control dependence results in a conservative over approximation of the 
set of instructions that should be considered dynamic. In the above example, both 
assignments to x would also be labelled dynamic, and thus the partial evaluator would ignore 
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them. In this case, this wouldn't be too big of a problem. A more problematic case would be 
the following kind of idiom: 

void bar(int input_var)  
{  
  if (!is_valid_input(input_var) {  
    report_error();  
    return;  
  }  
 
  /* ... rest of the function ... */  
} 

Here we have an error check at the beginning of the function to exit early if invalid data is 
provided. The "rest of the function" portion of the function is entirely control-dependent on 
this error check. Thus the slice performed by the partial evaluator will label this portion of 
the function entirely dynamic and miss any opportunities for optimization. 

Other work in the literature has explored relaxing the requirement to rely on control 
dependence. A key problem that occurs when doing so is creating situations in which the 
partial evaluator fails to terminate (or provides an incorrect result). One approach to solving 
this is to use a termination analysis to attempt to determine if the partial evaluator will 
terminate in a given situation. If so, then the control-dependence can be relaxed. Another 
possibility is to pattern-match for specific situations (like the above) and relax the reliance on 
control dependence in such situations. We plan to explore these options in the next quarter. 

4 Goals for the next reporting period 

In the next reporting period we expect to complete the following: 

• Investigate techniques for constraining the partial evaluator’s slicing step in order to 
construct a more precise partitioning when operating on a subcomponent of a 
program. 

• Investigate techniques for relaxing the reliance on control dependences when 
constructing the static/dynamic partitioning for the partial evaluator. 
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5 Milestones 
Interim results on multi-month tasks will be reported in the quarterly progress reports. 

 

6 Issues requiring Government attention 
None. 

 
 
 

Milestone 
Planned 
Start date 

Planned Delivery/ 
Completion Date 

Actual Delivery/ Completion 
Date 

Kickoff Mtg  9/4/2014 9/4/2014 

Transition Specialization Slicing 7/2014 12/2014 12/2014 

Robustness & Reliability of IR & 
Rewriting 

7/2014 12/2014 12/2014 – statically linked 
exes 

First Quarterly Report  9/30/2014 11/21/14 

Transition Partial Evaluation 
and Instruction Synthesis 

12/2014 5/2015 In progress 

Second Quarterly Report  12/30/2014 2/19/2015 

Third Quarterly Report  3/30/2015 5/11/2015 

Fourth Quarterly Report  6/30/2015 7/3/2015 

Fifth Quarterly Report  9/30/2015  

Sixth Quarterly Report  12/30/2015  

Seventh Quarterly Report  3/30/2016  

Evaluation 4/2016 6/2016  

Final Report  6/30/2016  
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